A Tale of Two Motors

Test Number 2

After seeing the results from test number 1, How much do 19 inch tyres and wheels improve the performance of a Tesla Model Y, it was decided to do a second 272 km test (along the same route) between the same Model Y Performance with 19 inch Gemini wheels and tyres and a Standard Model Y with exactly the same wheel and tyre set-up.

The clear difference between these two vehicles is their drive units. The Performance Y has dual motors with a maximum of 393kW power, whereas the Standard Y has a single motor producing a maximum 194kW. The Performance Y is 88kg heavier than its standard range stable-mate due to a combination of different-sized battery packs (and chemistry difference) and the extra weight of its additional motor. The operating parameters of the two cars were identical with tyre pressures set to 42 psi cold, air conditioners set to 22°C and the same number of occupants in each car. You can read in the initial test all the steps taken to obtain an untainted result.

Model Y
Performance
19″ Gemini
Model Y
Standard
19″ Gemini
Leg 1
31km
206Wh/km198Wh/km
Leg 2
105km
164Wh/km165Wh/km
Leg 3
105km
153Wh/km156Wh/km
Leg 4
31km
98Wh/km105Wh/km
Total
272km
157Wh/km158Wh/km

Test start 9.05 am, completion 12.42 pm. Weather, clear skies temp 13 – 20°C. Moderate wind from the same direction for the whole test which reflects in the result for Legs 2 & 3.

Please note the Performance Y once again recorded a total trip of 271 km over a 272 km journey, the other two test cars both recorded 272 km.

Although the Performance Y is heavier than the Standard Y and also has a second drive unit which slightly adds to mechanical friction losses, these disadvantages are likely compensated for by it being about 14 mm closer to the ground. Since reduced ground clearance enhances efficiency at higher speeds, a test in stop/start city conditions would likely slightly favor the Standard Model Y.

Which is the best Model Y variation?

First up the Performance, Long Range and Standard variations of a Model Y all have the major reasons to buy a Model Y in the first place: Excellent internal storage space considering its outside dimensions, good rear seat legroom, comfortable upright front seats, a high level of safety for occupants in a crash, all can legally tow 1600kg with trailer brakes, the most efficient pure electric drivetrain for its size and weight, and lastly but most importantly full access to the best and most reliable charging infrastructure in Australia, that being the Tesla Supercharging network.

The Performance Model Y
$101,564 on road in Western Australia (as of 17/02/2024)
Check Tesla website for current pricing
74.5kWh usable NCA battery pack
514kms WLTP
Genuine range on coarse country roads 408kms.

This variation has the additions of dual electric motors, performance brakes, slightly lowered suspension and a few cosmetic additions, it also has a track mode setting if you can find a safe controlled track to let the car off it’s leash.
The Performance is brutally quick when required, the brakes are extremely good and the 21 inch wheels with Pirelli Pzeros look fantastic. Unfortunately the 21s are the only wheel/tyre combo available, these consume a lot of energy. If you’re happy to drive in the Albany-Perth-Geraldton corridor the 21s are fine, if you have plans for long country trips away from reliable DC charging you will have to drive with a bit more caution.

Long Range Model Y
$86,484 on road in Western Australia
74.5kWh usable NCA battery pack
533kms WLTP
Genuine range on coarse country roads 464kms with 19 inch wheels

This variation is often referred to as the sweet spot; Dual electric motors, very good acceleration, the longest range battery and priced so it does receive some tax breaks for business folks. It also has the choice of 19 inch Gemini wheels or 20 inch Induction wheels ($2400+tax), the Induction wheels will reduce range slightly so my advice would be to option the Geminis and purchase a $300 set of Induction wheel covers for city driving and refit the Gemini hubcaps on long trips away from reliable DC charging.
My guess is the LR will outsell the Performance by a margin of 5 to 1 in Australia, especially to those that think range anxiety is real. If I lived in a WA country town or towed a trailer more than 1000kms on a regular basis I’d consider the Long Range Model Y.

Standard Model Y
$72,639 on road in WA
(eligible for $3,500 state Government rebate – if no options)
57kWh usable LFP battery pack (the Ricky Gervais pack)
455kms WLTP
Genuine range on coarse country roads 370kms with 19 inch wheels

Despite having good sales already in WA this rear motor only variation is still massively misunderstood amongst the public, it may be the “slowest Tesla ever” with a 0-100kmh time of 6.9 seconds but the critically importantly 80-120km acceleration is plentiful. It may have the smallest capacity battery pack but it’s LFP chemistry means the battery pack is far more flexible, the LFP is very happy being charged to 100% on a weekly basis (even daily if you “just don’t care”), it may not charge faster than 170kW like the NCA packs but the LFP has a flatter DC charging rate that is less confusing to new owners.
Take note: The three fastest pure EV trips around Australia took 14, 16 and 17 days. All completed in Standard Range Model Ys.

As each month passes and reliable DC chargers installations increase around Western Australia the more the Standard Model Y will be able to travel without compromise. If you live in the Perth-Albany-Augusta triangle and don’t care about brutal acceleration or all wheel drive traction the Model Y Standard is the best choice of the 3 variations.

How much do 19 inch Gemini Wheels and Tyres improve the Energy Efficiency of the Model Y Performance?

The only way to correctly test energy efficiency is by having two similar cars driven on the same roads at the same time over a reasonable long distance.

This test was conducted using two almost identical 2023 White Model Y Performance vehicles built in the Shanghai factory within days of each other. Both had covered over 1,600kms in the first week of ownership. Both had aircons set to 22°C. Both had cold tyre pressures of 42psi. Both had two occupants. It is crucial to note that neither car used the Williams Supercharger to navigate to and thus battery preconditioning was NOT used to avoid contaminating the results. During the test, the cars were driven no closer than 60 metres at highway speeds with the biggest gap being approximately 400 metres. Each car drove the front position for half the journey.

Cars were driven at the speed limit (max 110km/h) as much as possible with overtaking of slower traffic only conducted on designated overtaking lanes. Luckily traffic flow was generally good during the whole test.

To be clear, the test was conducted mostly on the Albany highway, a coarse road surface that’s consumes plenty of energy and is often used by Tesla drivers visiting the Great Southern.

Over the total 272km test (136kms south, 136kms north), the Performance model Y with factory fitted 21 inch Überturbines averaged 178Wh/km while the Performance model Y with the 19inch Gemini rims and hub caps (acquired from a new standard range model Y) averaged 158Wh/km, an improvement of 11%. That’s not a typo, that’s eleven percent with every other aspect of the two cars being identical.

There’s two main factors that cause the difference in energy efficiency: The 21inch Überturbines have what could be described as “sticky” Pirelli tyres, great for putting down the power and torque of the dual electric motors under extremely hard driving, but energy hungry in general driving. The 21 inch wheel/tyre combo has less smooth tyre surface and more rough wheel surface on the outside of the car. The Gemini wheels have more smooth tyre surface and a fairly smooth hub cap so airflow at higher speeds is less interrupted. If you’re a City Slicker, the 21 inch Uberturbines are fine. If you plan on long distance driving away from reliable DC charging, the energy wasted may be an issue.

Model Y
Performance
21″ Überturbines
Model Y
Performance
19″ Gemini
Leg 1
31 km
212Wh/km195Wh/km
Leg 2
105 km
168Wh/km149Wh/km
Leg 3
105 km
200Wh/km175Wh/km
Leg 4
31 km
105Wh/km95Wh/km
Total
272km
178Wh/km158Wh/km
TOCWA Note: Distance per Leg is approximate
  • Leg 1: Byford to Albany Hwy T junction. Moderately uphill, average speed 64 km/h
  • Leg 2: T junction to Williams Woolshed Supercharger. Moderately downhill, average speed 97 km/h
  • Leg 3: Return Williams Woolshed to T junction. Moderately uphill, average speed 102 km/h
  • Leg 3: T junction to Byford. Moderately downhill, average speed 71 km/h

Conditions: dry 22°C to 29°C, light winds. Start time 9.30 am, finish 1.15 pm.

Überturbines (left photograph), Geminis (right photograph). Both “Since Charge” screens did not reset to zero as per normal after Supercharging???

This test was conducted by Harald Murphy and Rob Dean, two of the most experienced long distance drivers in Australia.

The WA EV Network has Arrived!

The much-needed WA EV network is here! Geraldton and Northampton are the first two sites to have been commissioned and, as of today, both are now operational. Geraldton boasts two 150kW fast DC chargers which are ready to replace the temporary 50 kW TOCWA (Tesla Owners Club of Western Australia) DC charger that has been a godsend for hundreds of EV road trips. Northampton has one 150kW DC charger as well as a 7kW AC charger.

One of two 150kW Kempower DC chargers at Geraldton
WA EV Network Map

EV drivers eager to hit the country roads during these school holidays, will take comfort in knowing that each 150 kW charger shares its capacity across two CCS2 cables which means that up to four EVs can charge at any one time. If two EVs are sharing a single charger, the 150 kW capacity will be shared between the two cars, however, if the two EVs are spread across the two chargers, drivers may be able to draw up to the full 150 kW rate, which is good for a peak charge rate of approximately 1,000 km an hour in WA’s most popular EV, the Tesla Model 3 Rear Wheel Drive. This means that the majority of charging sessions are expected to take approximately 20 to 25 minutes, which is not only the minimum recommended break duration on long road trips but also just enough time to use the bathroom and grab a drink, coffee, or a bite to eat.

From left to right: Carl Van Heerden – Synergy, Sandra Giry – Synergy, Liam Dunphy – HEC, Pushpa Gurung – Synergy, Diarmuid O’Donovan – HEC, Jong Yiing Yang – Jetcharge, Harald Murphy – TOCWA, Guy McHugh – Synergy, Mary Davadra – Synergy, Sean Henderson – Jetcharge.

Geraldton and Northampton are the first of a total of 49 charging locations that will span the state, enabling EV drivers to fast charge every few hundred kilometres from the Northern Territory border, along the coast, all the way to the South Australian border. The WA EV Network has been funded by the WA State Government and will be available on the Chargefox network, however, a simple swipe of a credit card will be sufficient to get the electrons flowing. (This feature is not currently activated but it is coming soon.)

Originally the brainchild of Professor Thomas Braunl, the WA EV network, which comprises of Synergy and Horizon Power chargers, will add to the existing charging assets, including Tesla’s Supercharger network, the RAC Electric Highway, as well as other networks and dozens of commercial, donated, or crowd-funded chargers, such as the 50 kW AEVA DC units in Lake Grace and Ravensthorpe. You can find the WA EV Network chargers on the Chargefox app or for a complete listing check out www.plugshare.com

Full House at the First Test-Charge with four EVs charging simultaneously
The Northampton site at 202 Hampton Rd, Northampton
A successful test-charge in Geraldton. The Geraldton site is located at 31 Foreshore Dr, Geraldton.
The cafe across the road from the Geraldton charger will be a handy place to take a break on long road trips.